Biopharmaceutics Modeling And Simulations Theory Practice Methods And Applications Pdf

This is likewise one of the factors by obtaining the soft documents of this Biopharmaceutics Modeling And Simulations Theory Practice Methods And Applications Pdf by online. You might not require more get older to spend to go to the books foundation as skillfully as search for them. In some cases, you likewise complete not discover the message Biopharmaceutics Modeling And Simulations Theory Practice Methods And Applications Pdf that you are looking for. It will definitely squander the time.

However below, behind you visit this web page, it will be in view of that definitely easy to get as capably as download lead Biopharmaceutics Modeling And Simulations Theory Practice Methods And Applications Pdf It will not take many get older as we tell before. You can pull off it while perform something else at home and even in your workplace. in view of that easy! So, are you question? Just exercise just what we present under as skillfully as evaluation Biopharmaceutics Modeling And Simulations Theory Practice Methods And Applications Pdf what you when to read!

Predictive Modeling of Pharmaceutical Unit Operations - Preetanshu Pandey 2016-09-26
The use of modeling and simulation tools is rapidly gaining prominence in the pharmaceutical industry covering a wide range of applications. This book focuses on modeling and simulation tools as they pertain to drug product manufacturing processes, although similar principles and tools may apply to many other areas. Modeling tools can improve fundamental process understanding and provide valuable insights into the manufacturing processes, which can result in significant process improvements and cost savings. With FDA mandating the use of Quality by Design (QbD) principles during manufacturing, reliable modeling techniques can help to alleviate the costs associated with such efforts, and be used to create in silico formulation and process design space. This book is geared toward detailing modeling techniques that are utilized for the various unit operations during drug product manufacturing. By way of examples that include case studies, various modeling principles are explained for the nonexpert end users. A discussion on the
role of modeling in quality risk management for manufacturing and application of modeling for continuous manufacturing and biologics is also included. Explains the commonly used modeling and simulation tools. Details the modeling of various unit operations commonly utilized in solid dosage drug product manufacturing, Practical examples of the application of modeling tools through case studies. Discussion of modeling techniques used for a risk-based approach to regulatory filings. Explores the usage of modeling in upcoming areas such as continuous manufacturing and biologics manufacturing.

Polymorphism in the Pharmaceutical Industry - Rolf Hilfiker 2019-04-29

"Polymorphism in the Pharmaceutical Industry - Solid Form and Drug Development" highlights the relevance of polymorphism in modern pharmaceutical chemistry, with a focus on quality by design (QbD) concepts. It covers all important issues by way of case studies, ranging from properties and crystallization, via thermodynamics, analytics and theoretical modelling right up to patent issues. As such, the book underscores the importance of solid-state chemistry within chemical and pharmaceutical development. It emphasizes why solid-state issues are important, the approaches needed to avoid problems and the opportunities offered by solid-state properties. The authors include true polymorphs as well as solvates and hydrates, while providing information on physicochemical properties, crystallization thermodynamics, quantum-mechanical modelling, and up-scaling. Important analytical tools to characterize solid-state forms and to quantify mixtures are summarized, and case studies on solid-state development processes in industry are also provided. Written by acknowledged experts in the field, this is a high-quality reference for researchers, project managers and quality assurance managers in pharmaceutical, agrochemical and fine chemical companies as well as for academics and newcomers to organic solid-state chemistry.

Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations - Sheila Annie Peters 2012-02-17

The only book dedicated to physiologically-based pharmacokinetic modeling in pharmaceutical science. Physiologically-based pharmacokinetic (PBPK) modeling has become increasingly widespread within the pharmaceutical industry over the last decade, but without one dedicated book that provides the information researchers need to learn these new techniques, its applications are severely limited. Describing the principles, methods, and applications of PBPK modeling as used in pharmaceutics, Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations fills this void. Connecting theory with practice, the book explores the incredible potential of PBPK modeling for improving drug discovery and development.
Comprised of two parts, the book first provides a detailed and systematic treatment of the principles behind physiological modeling of pharmacokinetic processes, inter-individual variability, and drug interactions for small molecule drugs and biologics. The second part looks in greater detail at the powerful applications of PBPK to drug research. Designed for a wide audience encompassing readers looking for a brief overview of the field as well as those who need more detail, the book includes a range of important learning aids. Featuring end-of-chapter keywords for easy reference—a valuable asset for general or novice readers without a PBPK background—along with an extensive bibliography for those looking for further information, Physiologically-Based Pharmacokinetic (PBPK) Modeling and Simulations is the essential single-volume text on one of the hottest topics in the pharmaceutical sciences today.

Molecular Dynamics of Nanostructures and Nanoionics - Junko Habasaki 2020-11-30

Nanostructured materials with multiple components and complex structures are the current focus of research and are expected to develop further for material designs in many applications in electrochemical, colloidal, medical, pharmaceutical, and several other fields. This book discusses complex nanostructured systems exemplified by nanoporous silicates, spontaneously formed gels from silica-nanocolloidal solutions, and related systems, and examines them using molecular dynamics simulations. Nanoporous materials, nanocolloidal systems, and gels are useful in many applications and can be used in electric devices and storage, and for gas, ion, and drug delivery. The book gives an overview of the history, current status, and frontiers of the field. It also discusses the fundamental aspects related to the common behaviors of some of these systems and common analytical methods to treat them.

Mathematical Modeling and Simulation in Enteric Neurobiology - Roustem Miftahof 2009

The lack of scientists equally trained and prepared to understand both mathematics and biology/medicine hampers the development and application of computer simulation methods in biology and neurogastrobiology. Currently, there are no texts for navigating the extensive and intricate field of mathematical and computational modeling in neurogastrobiology. This book bridges the gap between mathematicians, computer scientists and biologists, and thus assists in the study and analysis of complex biological phenomena that cannot be done through traditional in vivo and in vitro experimental approaches. The book recognizes the complexity of biological phenomena under investigation and treats the subject matter with a degree of mathematical rigor. Special attention is given to computer simulations for interpolation and extrapolation of electromechanical and chemoelectrical phenomena, nonlinear self-
sustained electromechanical wave activity, pharmacological effects including co-localization and co-transmission by multiple neurotransmitters, receptor polymodality, and drug interactions. Mathematical Modeling and Simulation in Enteric Neurobiology is an interdisciplinary book and is an essential source of information for biologists and doctors who are interested in knowing about the role and advantages of numerical experimentation in their subjects, as well as for mathematicians who are interested in exploring new areas of applications.

In Silico Drug Discovery and Design - Claudio N. Cavasotto 2015-08-06

In Silico Drug Discovery and Design: Theory, Methods, Challenges, and Applications provides a comprehensive, unified, and in-depth overview of the current methodological strategies in computer-aided drug discovery and design. Its main aims are to introduce the theoretical framework and algorithms, discuss the range of validity, strengths and limita

Computer-aided applications in pharmaceutical technology - Sandra Grbic 2013-04-10

This chapter introduces the concept of gastrointestinal absorption simulation using in silico methodology. Parameters used for model construction and the sensitivity predicted pharmacokinetic responses to various input parameters are described. Virtual trials for in silico modeling of drug absorption are presented. The influence of food on drug absorption, as well as correlation between the in vitro and in vivo results, are also addressed, followed by biowaiver considerations. Numerous examples are provided throughout the chapter.

Chemical Engineering in the Pharmaceutical Industry, Active Pharmaceutical Ingredients - David J. am Ende 2019-03-28

A guide to the development and manufacturing of pharmaceutical products written for professionals in the industry, revised second edition The revised and updated second edition of Chemical Engineering in the Pharmaceutical Industry is a practical book that highlights chemistry and chemical engineering. The book’s regulatory quality strategies target the development and manufacturing of pharmaceutically active ingredients of pharmaceutical products. The expanded second edition contains revised content with many new case studies and additional example calculations that are of interest to chemical engineers. The 2nd Edition is divided into two separate books: 1) Active Pharmaceutical Ingredients (API’s) and 2) Drug Product Design, Development and Modeling. The active pharmaceutical ingredients book puts the focus on the chemistry, chemical engineering, and unit operations specific to development and manufacturing of
the active ingredients of the pharmaceutical product. The drug substance operations section includes information on chemical reactions, mixing, distillations, extractions, crystallizations, filtration, drying, and wet and dry milling. In addition, the book includes many applications of process modeling and modern software tools that are geared toward batch-scale and continuous drug substance pharmaceutical operations. This updated second edition: • Contains 30 new chapters or revised chapters specific to API, covering topics including: manufacturing quality by design, computational approaches, continuous manufacturing, crystallization and final form, process safety • Expanded topics of scale-up, continuous processing, applications of thermodynamics and thermodynamic modeling, filtration and drying • Presents updated and expanded example calculations • Includes contributions from noted experts in the field

Written for pharmaceutical engineers, chemical engineers, undergraduate and graduate students, and professionals in the field of pharmaceutical sciences and manufacturing, the second edition of Chemical Engineering in the Pharmaceutical Industry focuses on the development and chemical engineering as well as operations specific to the design, formulation, and manufacture of drug substance and products.

Pharmacokinetic-Pharmacodynamic Modeling and Simulation - Peter L. Bonate 2006-05-14

A natural hierarchy exists in pharmacokinetic-pharmacodynamic modeling culminating in population pharmacokinetic models, which are a specific type of nonlinear mixed effects model. The purpose of this book is to present through theory and example how to develop pharmacokinetic models, both at an individual and population level. In order to do so, however, one must first understand linear models and then build to nonlinear models followed by linear mixed effects models and then ultimately nonlinear mixed effects models. This book develops in that manner – each chapter builds upon previous chapters by first presenting the theory and then illustrating the theory using published data sets and actual data sets that were used in the development of new chemical entities collected by the author during his years in industry. A key feature of the book is the process of modeling. Most books and manuscripts often present the final model never showing how the model evolved. In this book all examples are presented in an evolutionary manner.

Biopharmaceutics and Pharmacokinetics Considerations - 2021-07-07

Biopharmaceutics and Pharmacokinetics Considerations examines the history of biopharmaceutics and pharmacokinetics. The book provides a biopharmaceutics and pharmacokinetics approach to addressing issues in formulation development and ethical considerations in handling animals. Written by experts in
the field, this volume within the Advances in Pharmaceutical Product Development and Research series deepens understanding of biopharmaceutics and pharmacokinetics within drug discovery and drug development. Each chapter delves into a particular aspect of this fundamental field to cover the principles, methodologies and technologies employed by pharmaceutical scientists, researchers and pharmaceutical industries to study the chemical and physical properties of drugs and the biological effects they produce. Examines the most recent developments in biopharmaceutics and pharmacokinetics for pharmaceutical sciences Covers the principles, methodologies and technologies of biopharmaceutics and pharmacokinetics Focuses on the pharmaceutical sciences, but also encompasses aspects of toxicology, neuroscience, environmental sciences and nanotechnology

Applying Molecular and Materials Modeling - Phillip R. Westmoreland 2013-04-17

Computational molecular and materials modeling has emerged to deliver solid technological impacts in the chemical, pharmaceutical, and materials industries. It is not the all-predictive science fiction that discouraged early adopters in the 1980s. Rather, it is proving a valuable aid to designing and developing new products and processes. People create, not computers, and these tools give them qualitative relations and quantitative properties that they need to make creative decisions. With detailed analysis and examples from around the world, Applying Molecular and Materials Modeling describes the science, applications, and infrastructures that have proven successful. Computational quantum chemistry, molecular simulations, informatics, desktop graphics, and high-performance computing all play important roles. At the same time, the best technology requires the right practitioners, the right organizational structures, and - most of all - a clearly understood blend of imagination and realism that propels technological advances. This book is itself a powerful tool to help scientists, engineers, and managers understand and take advantage of these advances.

Innovations in Biomolecular Modeling and Simulations - Tamar Schlick 2012-05-24

The chemical and biological sciences face unprecedented opportunities in the 21st century. A confluence of factors from parallel universes - advances in experimental techniques in biomolecular structure determination, progress in theoretical modeling and simulation for large biological systems, and breakthroughs in computer technology - has opened new avenues of opportunity as never before. Now, experimental data can be interpreted and further analysed by modeling, and predictions from any approach can be tested and advanced through companion methodologies and technologies. This two
volume set describes innovations in biomolecular modeling and simulation, in both the algorithmic and application fronts. With contributions from experts in the field, the books describe progress and innovation in areas including: simulation algorithms for dynamics and enhanced configurational sampling, force field development, implicit solvation models, coarse-grained models, quantum-mechanical simulations, protein folding, DNA polymerase mechanisms, nucleic acid complexes and simulations, RNA structure analysis and design and other important topics in structural biology modeling. The books are aimed at graduate students and experts in structural biology and chemistry and the emphasis is on reporting innovative new approaches rather than providing comprehensive reviews on each subject.

Current Methods In Medicinal Chemistry And Biological Physics - Carlton A. Taft 2008-01-01

This book is aimed at, from students to advanced researchers, for anyone that is interested or works with current experimental and theoretical methods in medicinal chemistry and biological physics, with particular interest in chemoinformatics, bioinformatics, molecular modeling, QSAR, spectrometry, molecular biology and combinatorial chemistry for many therapeutic purposes. This book attempts to convey something of the fascination of working in these multidisciplinary areas, which overlap knowledge of chemistry, physics, biochemistry, biology and pharmacology. This second volume, in particular, contains 11 chapters, of which 6 are related to theoretical methods in medicinal chemistry and at least 5 deal with experimental/mixed methods. In the modern computational medicinal chemistry, quantum mechanics (QM) plays an important role since the associated methods can describe molecular energies, bond breaking or forming, charge transfer and polarization effects. Historically in drug design, QM ligand-based applications were devoted to investigations of electronic features, and they have also been routinely used in the development of quantum descriptors in quantitative structure-activity relationships (QSAR) approaches. In chapter 1, we present an overview of the state-of-the-art of quantum methods currently used in medicinal chemistry. Molecular Dynamics (MD) simulation is a sophisticated molecular modeling technique useful to describe molecular structures and macroscopic properties in very large molecular systems comprising hundreds or even thousands of atoms. In the field of drug discovery, MD simulation has been widely used to understand the biomolecule structure, drug and biomolecule interactions. The chapter 2 outlines the theory and practical details of MD approach and focuses on its application in studies of prediction of binding affinities for putative receptor-ligand complexes. In chapter 3 we discuss the important role of the homology modeling procedure in the drug discovery process. This strategy, associated with computational
power and more sophisticated and robust algorithms, has been used to predict properties, energies, conformations and support the binding modes of ligands inside their receptor sites. This approach is vital in structure-based drug design (SBBD), since it can quickly predict the tertiary structure of the target whose structure has not been experimentally solved. In drug discovery research, a massive dataset of information is involved and the high throughput screening of typically millions of compounds plays an important role. Different docking protocols can be combined in order to predict binding models and affinities of a ligand with a target receptor, selecting as example the best drug-like compound candidates to further experimental assays, leading to a reduction in the time and cost of the drug discovery process.

In the chapter 4, we discuss the general basis and aspects of this approach, presenting some successful cases in drug discovery. Structure-based approaches have increasingly demonstrated their value in drug design. The impact of these technologies on early discovery and lead optimization is significant. Although there is a multiplicity of different approaches being employed in early stages of drug discovery, structure-based drug design (SBDD) is one of the most powerful techniques, and has been used quite frequently by scientists in the pharmaceutical industry as well as in academic laboratories over the past twenty years. The evolution of medicinal chemistry has resulted in an increase in the number of successful applications of structure-based approaches. Some case studies are presented in chapter 5, exploring the value of structure-based virtual screening (SBVS) approaches in drug design, highlighting the identification of novel, potent and selective receptor modulators with drug like properties. Drug discovery has moved toward more rational strategies based on our increasing understanding of the fundamental principles of protein-ligand interactions. The combination of available knowledge of several 3D protein structures with hundreds of thousands of commercially available small molecules has attracted the attention of scientists from all over the world for the application of structure-based pharmacophore strategies. Pharmacophore approaches offer timely and cost-effective ways to identify new drug-like ligands for a variety of biological targets, and their utility in drug design is unquestionable. In the chapter 6, the understanding and limitations of this approach in drug R&D are discussed. Modern molecular biology has inundated drug discovery organizations with countless potential novel drug targets. A foremost challenge for the researchers is to validate this asset of targets with bioactive small molecules (bioproducts can also be included). Eventually, they will be developed into drugs for the more promising targets. The difficulty of finding a good small-molecule starting point is at the beginning of the searching for a proper chemical
space that is well related to biological space. Drugs that are small molecules and act at enzyme targets account for over 50% of all medicines in therapeutically use in the marketplace. It is for this reason that chapter 7 take thermodynamics of the small molecule-target enzyme interactions into account to a limited scope. So far, the main purpose of this chapter is to provide a guidance profile of biocalorimetry and its role in drug discovery and development. The chapter 8 intends to describe how proteomes can be analyzed and studied. It addresses some available databases and bioinformatics tools. The description of certain instrumentation, such as mass spectrometry is also presented, but not highly detailed. The aim of chapter 9 is to introduce the reader to the wide spectrum of tools currently available in the drug validation process. With the conclusion of the human genome sequencing, an increase demand for target validation follows the development of high throughput techniques used in the identification of potential new drugs. In vitro technology as the RNA interference (RNAi) and recombinant protein array together with advances on the in vivo technology as the development of transgenic animals, including here the humanized ones, will certainly improve the safety of future clinical trials processes and ultimately play an important role in the treatment of several human diseases. A therapeutically significant drug may have limited utilization in clinical practice because of various shortcomings like poor organoleptic properties (chloranphenicol), poor bioavailability (ampicillin), lack of site specificity (antineoplastic agents), incomplete absorption (epinephrine), poor aqueous solubility (corticosteroids), high first-pass metabolism (propranolol), low chemical stability (penicillin), high toxicity (thalidomide) or other adverse effects. Sometimes, an adequate pharmaceutical formulation can overcome these drawbacks, but often the galenic formulation is inoperant and a chemical modification of active molecule is necessary to correct its pharmacokinetic profile. This chemical formulation process, whose objective is to convert an interesting active molecule into a clinically acceptable drug, often involves the so-called prodrug design, which is extensively discussed in chapter 10. The dominant role of synthetic chemistry has been increasingly challenged by knowledge of the structure and functions of enzymes, receptors, channels, membrane pumps, nucleic acids and by the exponential growth of information about biology, genetics and pathology, giving paramount importance to the dialogue between chemists and biologists. Nevertheless, as in the old days, the development of new chemical entities is still highly dependent on the ability of chemists to obtain, with simple, reliable, fast and possibly inexpensive methods, the molecules that have been designed. Even if it is an undisputed fact that biology has become exceedingly important in drug research, it is reasonable to imagine that
chemistry, and in particular synthetic organic chemistry, will continue to play a fundamental role in academic research and in the R&D departments of drug companies of the third millennium. In chapter 11, we describe synthetic routes that have been used to synthesize the structures of top drugs in current usage. This provides an ideal way of introducing students to a wide range of applied chemistry with brief descriptions of the modes of action of these drugs. Some contents of this book therefore reflect our own ideas and personal experiences, which are presented in reviews of different topics here investigated. It is interesting to consider the information described in this book as the starting point to access available and varied knowledge in Medicinal Chemistry and Biological Physics or related areas.

This book provides a user-friendly, hands-on introduction to the Nonlinear Mixed Effects Modeling (NONMEM) system, the most powerful tool for pharmacokinetic / pharmacodynamic analysis. • Introduces requisite background to using Nonlinear Mixed Effects Modeling (NONMEM), covering data requirements, model building and evaluation, and quality control aspects • Provides examples of nonlinear modeling concepts and estimation basics with discussion on the model building process and applications of empirical Bayesian estimates in the drug development environment • Includes detailed chapters on data set structure, developing control streams for modeling and simulation, model applications, interpretation of NONMEM output and results, and quality control • Has datasets, programming code, and practice exercises with solutions, available on a supplementary website

Biomolecular Simulations in Structure-Based Drug Discovery - Francesco L. Gervasio 2019-04-29

A guide to applying the power of modern simulation tools to better drug design Biomolecular Simulations in Structure-based Drug Discovery offers an up-to-date and comprehensive review of modern simulation tools and their applications in real-life drug discovery, for better and quicker results in structure-based drug design. The authors describe common tools used in the biomolecular simulation of drugs and their targets and offer an analysis of the accuracy of the predictions. They also show how to integrate modeling with other experimental data. Filled with numerous case studies from different therapeutic fields, the book helps professionals to quickly adopt these new methods for their current projects. Experts from the pharmaceutical industry and academic institutions present real-life examples for important target classes such as GPCRs, ion channels and amyloids as well as for common challenges in structure-based drug
discovery. Biomolecular Simulations in Structure-based Drug Discovery is an important resource that: - Contains a review of the current generation of biomolecular simulation tools that have the robustness and speed that allows them to be used as routine tools by non-specialists - Includes information on the novel methods and strategies for the modeling of drug-target interactions within the framework of real-life drug discovery and development - Offers numerous illustrative case studies from a wide-range of therapeutic fields - Presents an application-oriented reference that is ideal for those working in the various fields

Written for medicinal chemists, professionals in the pharmaceutical industry, and pharmaceutical chemists, Biomolecular Simulations in Structure-based Drug Discovery is a comprehensive resource to modern simulation tools that complement and have the potential to complement or replace laboratory assays for better results in drug design.

Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations - Sheila Annie Peters
2021-10-12

Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations The first book dedicated to the emerging field of physiologically based pharmacokinetic modeling (PBPK) Now in its second edition, Physiologically Based Pharmacokinetic (PBPK) Modelling and Simulations: Principles, Methods, and Applications in the Pharma Industry remains the premier reference book throughout the rapidly growing PBPK user community. Using clear and concise language, author Sheila Annie Peters connects theory with practice as she explores the vast potential of PBPK modeling for improving drug discovery and development. This fully updated new edition covers key developments in the field of PBPK modelling and simulations that have emerged in recent years. A brand-new section provides case studies in different application areas of PBPK modelling, including drug-drug interaction, genetic polymorphism, renal impairment, and pediatric extrapolation. Additional chapters address topics such as model-informed drug development (MIDD) and expose readers to a wide range of current applications in the field. Throughout the book, substantially revised chapters simplify complex topics and offer a balanced view of both the opportunities and challenges of PBPK modelling. Providing timely and comprehensive coverage of one of the most exciting new areas of pharmaceutical science, this book: Describes the principles behind physiological modeling of pharmacokinetic processes, inter-individual variability, and drug interactions for small molecule drugs and biologics Features a wealth of new figures and case studies of the applications of PBPK modelling along the value chain in drug discovery and development Reflects the latest regulatory
guidelines on the reporting of PBPK modelling analysis Includes access to a new companion website containing code, datasets, explanations of case examples in the text, and discussion of key developments in the field Contains a brief overview of the field, end-of-chapter keywords for easy reference, and an extensive bibliography Physiologically Based Pharmacokinetic (PBPK) Modeling and Simulations: Principles, Methods, and Applications in the Pharmaceutical Industry, Second Edition is an indispensable single-volume resource for beginning and intermediate practitioners across the pharmaceutical sciences in both industry and academia.

Biopharmaceutical Applied Statistics Symposium - Karl E. Peace 2018

This BASS book Series publishes selected high-quality papers reflecting recent advances in the design and biostatistical analysis of biopharmaceutical experiments - particularly biopharmaceutical clinical trials. The papers were selected from invited presentations at the Biopharmaceutical Applied Statistics Symposium (BASS), which was founded by the first Editor in 1994 and has since become the premier international conference in biopharmaceutical statistics. The primary aims of the BASS are: 1) to raise funding to support graduate students in biostatistics programs, and 2) to provide an opportunity for professionals engaged in pharmaceutical drug research and development to share insights into solving the problems they encounter. The BASS book series is initially divided into three volumes addressing: 1) Design of Clinical Trials; 2) Biostatistical Analysis of Clinical Trials; and 3) Pharmaceutical Applications. This book is the first of the 3-volume book series. The topics covered include: A Statistical Approach to Clinical Trial Simulations, Comparison of Statistical Analysis Methods Using Modeling and Simulation for Optimal Protocol Design, Adaptive Trial Design in Clinical Research, Best Practices and Recommendations for Trial Simulations in the Context of Designing Adaptive Clinical Trials, Designing and Analyzing Recurrent Event Data Trials, Bayesian Methodologies for Response-Adaptive Allocation, Addressing High Placebo Response in Neuroscience Clinical Trials, Phase I Cancer Clinical Trial Design: Single and Combination Agents, Sample Size and Power for the Mixed Linear Model, Crossover Designs in Clinical Trials, Data Monitoring: Structure for Clinical Trials and Sequential Monitoring Procedures, Design and Data Analysis for Multiregional Clinical Trials - Theory and Practice, Adaptive Group-Sequential Multi-regional Outcome Studies in Vaccines, Development and Validation of Patient-reported Outcomes, Interim Analysis of Survival Trials: Group Sequential Analyses, and Conditional Power - A Non-proportional Hazards Perspective.--
Advances in Pharmacokinetics and Pharmacodynamics - Panos Macheras 2023-05-26

This book provides a concise overview of recent advances in Pharmacokinetics (PK) and Pharmacodynamics (PD). The pharmacokinetics section covers the state of the art in Physiologically Based Pharmacokinetic (PBPK) modeling (Chapter 1) as well as the assessment of food effect on drug absorption using PBPK modeling (Chapter 2). Chapters 3 and 4 describe the recent development of Physiologically Based Finite Time Pharmacokinetic (PBFTPK) models and their applications to pharmacokinetic data. The pharmacodynamics section focuses on PK/PD modeling. Chapter 5 provides an overview of PK/PD modeling and simulation in clinical practice and studies. Chapter 6 deals with the subject/physiology variability issue encountered in PK/PD studies, while Chapter 7 reviews the influence of clinical pharmacology in the modernization of drug development and regulation. This book is an essential reference for pharmaceutical scientists.

Mathematical Modeling and Simulation in Enteric Neurobiology -

This thorough volume aims to provide pharmaceutical engineers with an introduction to the current state of the art in modeling and simulation of pharmaceutical processes and to summarize a number of practical applications of relevant methodologies in drug product development. Chapters include explorations of simulation and modeling methodologies, data collection and analysis, development of novel sensing techniques, development and integration of individual unit models, optimization approaches for data-based models, design space evaluation techniques, informatics-based methodologies, and emerging topics in pharmaceutical process development. As a part of the Methods in Pharmacology and Toxicology series, the chapters contain the kind of detail and implementation advice that will make the transition into the laboratory as smooth as possible. Authoritative and cutting edge, Process Simulation and Data Modeling in Solid Oral Drug Development and Manufacture seeks to promote research into process systems methodologies and their application in pharmaceutical product and process development, which will undoubtedly become an increasingly important area in the future.

Advances in Computational Toxicology - Huixiao Hong 2019

This book provides a comprehensive review of both traditional and cutting-edge methodologies that are
currently used in computational toxicology and specifically features its application in regulatory decision making. The authors from various government agencies such as FDA, NCATS and NIEHS industry, and academic institutes share their real-world experience and discuss most current practices in computational toxicology and potential applications in regulatory science. Among the topics covered are molecular modeling and molecular dynamics simulations, machine learning methods for toxicity analysis, network-based approaches for the assessment of drug toxicity and toxicogenomic analyses. Offering a valuable reference guide to computational toxicology and potential applications in regulatory science, this book will appeal to chemists, toxicologists, drug discovery and development researchers as well as to regulatory scientists, government reviewers and graduate students interested in this field.

Chemoinformatics: Theory, Practice, & Products - Barry A. Bunin 2006-11-23
Chemoinformatics is the use of information technology in the acquisition, analysis and management of data and information relating to chemical compounds and their properties. The purpose of this book is to provide computational scientists, medicinal chemists and biologists with complete practical information and underlying theory relating to modern Chemoinformatics and related drug discovery informatics technologies. This is an essential handbook for determining the right Chemoinformatics method or technology to use.

Revising Oral Pharmacokinetics, Bioavailability and Bioequivalence Based on the Finite Absorption Time Concept - Panos Macheras 2023-01-01
This book casts new light on the field of oral drug absorption. It outlines both the concept of the past and the novel concept of Finite Absorption Time (FAT). In addition, the authors explore the correlated need for re-definition of bioavailability, bioequivalence providing a plethora of experimental data. Accordingly, this book is intended for academics/students or scientists working in pharmaceutical industries, regulatory agencies, and contract research organizations. It can be used for teaching purposes in under- and post-graduate courses dealing with biopharmaceutics, pharmacokinetics and biomedical engineering.

Molecular Modeling in Drug Design - Outi Salo-Ahen 2019
Since the first attempts at structure-based drug design about four decades ago, molecular modelling techniques for drug design have developed enormously, along with the increasing computational power and structural and biological information of active compounds and potential target molecules. Nowadays, molecular modeling can be considered to be an integral component of the modern drug discovery and
development toolbox. Nevertheless, there are still many methodological challenges to be overcome in the application of molecular modeling approaches to drug discovery. The eight original research and five review articles collected in this book provide a snapshot of the state-of-the-art of molecular modeling in drug design, illustrating recent advances and critically discussing important challenges. The topics covered include virtual screening and pharmacophore modelling, chemoinformatic applications of artificial intelligence and machine learning, molecular dynamics simulation and enhanced sampling to investigate contributions of molecular flexibility to drug-receptor interactions, the modeling of drug-receptor solvation, hydrogen bonding and polarization, and drug design against protein-protein interfaces and membrane protein receptors.

Modeling in Biopharmaceutics, Pharmacokinetics and Pharmacodynamics - Panos Macheras 2016-03-30
The state of the art in Biopharmaceutics, Pharmacokinetics, and Pharmacodynamics Modeling is presented in this new second edition book. It shows how advanced physical and mathematical methods can expand classical models in order to cover heterogeneous drug-biological processes and therapeutic effects in the body. The book is divided into four parts; the first deals with the fundamental principles of fractals, diffusion and nonlinear dynamics; the second with drug dissolution, release, and absorption; the third with epirical, compartmental, and stochastic pharmacokinetic models, with two new chapters, one on fractional pharmacokinetics and one on bioequivalence; and the fourth mainly with classical and nonclassical aspects of pharmacodynamics. The classical models that have relevance and application to these sciences are also considered throughout. This second edition has new information on reaction limited models of dissolution, non binary biopharmaceutic classification system, time varying models, and interface models. Many examples are used to illustrate the intrinsic complexity of drug administration related phenomena in the human, justifying the use of advanced modeling methods. This book will appeal to graduate students and researchers in pharmacology, pharmaceutical sciences, bioengineering, and physiology. Reviews of the first edition: "This book presents a novel modelling approach to biopharmaceutics, pharmacokinetics and pharmacodynamic phenomena. This state-of-the-art volume will be helpful to students and researchers in pharmacology, bioengineering, and physiology. This book is a must for pharmaceutical researchers to keep up with recent developments in this field." (P. R. Parthasarathy, Zentralblatt MATH, Vol. 1103 (5), 2007) "These authors are the unique (or sole) contributors in this area that are working on these questions and bring a special expertise to the field that
is now being recognized as essential to understanding biological system and kinetic/dynamic characteristics in drug development...This text is an essential primer for those who would envision the incorporation of heterogeneous approaches to systems where homogeneous approaches are not sufficient to describe the system.” (Robert R. Bies, Journal of Clinical Pharmacology, Vol. 46, 2006)

High-Throughput Formulation Development of Biopharmaceuticals - Vladimir I. Razinkov 2016-09-29

High Throughput Formulation Development of Biopharmaceuticals: Practical Guide to Methods and Applications provides the latest developments and information on the science of stable and safe drug product formulations, presenting a comprehensive review and detailed description of modern methodologies in the field of formulation development, a process starting with candidate and pre-formulation screening in its early development phase and then progressing to the refinement of robust formulations during commercialization in the later phases of development. The title covers topics such as experiment design, automation of sample preparation and measurements, high-throughput analytics, stress-inducing methods, statistical analysis of large amounts of formulation study data, emerging technologies, and the presentation of several case studies, along with a concluding summary. Presents applications of high-throughput methodologies to accelerate drug formulation development Provides the latest technologies in the field Includes key statistical approaches, such as design of experiment and multivariate data analysis Written by highly respected formulation development experts

Biopharmaceutics Applications in Drug Development - Rajesh Krishna 2007-09-20

The highly experienced authors here present readers with step-wise, detail-conscious information to develop quality pharmaceuticals. The book is made up of carefully crafted sections introducing key concepts and advances in the areas of dissolution, BA/BE, BCS, IVIC, and product quality. It provides a specific focus on the integration of regulatory considerations and includes case histories highlighting the biopharmaceutics strategies adopted in development of successful drugs.

Molecular Modeling at the Atomic Scale - Ruhong Zhou 2014-08-21

Although molecular modeling has been around for a while, the groundbreaking advancement of massively parallel supercomputers and novel algorithms for parallelization is shaping this field into an exciting new area. Developments in molecular modeling from experimental and computational techniques have enabled a wide range of biological applications.

Modeling and Simulation in the Medical and Health Sciences - John A. Sokolowski 2012-01-25
This edited book is divided into three parts: Fundamentals of Medical and Health Sciences Modeling and Simulation introduces modeling and simulation in the medical and health sciences; Medical and Health Sciences Models provides the theoretical underpinnings of medical and health sciences modeling; and Modeling and Simulation Applications in Medical and Health Sciences focuses on teaching, training, and research applications. The book begins with a general discussion of modeling and simulation from the modeling and simulation discipline perspective. This discussion grounds the reader in common terminology. It also relates this terminology to concepts found in the medical and health care (MHC) area to help bridge the gap between developers and MHC practitioners. Three distinct modes of modeling and simulation are described: live, constructive, and virtual. The live approach explains the concept of using real (live) people employing real equipment for training purposes. The constructive mode is a means of engaging medical modeling and simulation. In constructive simulation, simulated people and simulated equipment are developed to augment real-world conditions for training or experimentation purposes. The virtual mode is perhaps the most fascinating as virtual operating rooms and synthetic training environments are being produced for practitioners and educators at break-neck speed. In this mode, real people are employing simulated equipment to improve physical skills and decision-making ability.

Discovering and Developing Molecules with Optimal Drug-Like Properties - Allen C Templeton 2014-10-31

This authoritative volume provides a contemporary view on the latest research in molecules with optimal drug-like properties. It is a valuable source to access current best practices as well as new research techniques and strategies. Written by leading scientists in their fields, the text consists of fourteen chapters with an underlying theme of early collaborative opportunities between pharmaceutical and discovery sciences. The book explores the practical realities of performing physical pharmaceutical and biopharmaceutical research in the context of drug discovery with short timelines and low compound availability. Chapters cover strategies and tactics to enable discovery as well as predictive approaches to establish, understand and communicate risks in early development. It also examines the detection, characterization, and assessment of risks on the solid state properties of advanced discovery and early development candidates, highlighting the link between solid state properties and critical development parameters such as solubility and stability. Final chapters center on techniques to improve molecular solubilization and prevent precipitation, with particularly emphasis on linking physiochemical properties of molecules to formulation selection in preclinical and clinical settings.
Biopharmaceutics Modeling and Simulations - Kiyohiko Sugano 2012-07-31

A comprehensive introduction to using modeling and simulation programs in drug discovery and development. Biopharmaceutical modeling has become integral to the design and development of new drugs. Influencing key aspects of the development process, including drug substance design, formulation design, and toxicological exposure assessment, biopharmaceutical modeling is now seen as the linchpin to a drug’s future success. And while there are a number of commercially available software programs for drug modeling, there has not been a single resource guiding pharmaceutical professionals to the actual tools and practices needed to design and test safe drugs. A guide to the basics of modeling and simulation programs, Biopharmaceutics Modeling and Simulations offers pharmaceutical scientists the keys to understanding how they work and are applied in creating drugs with desired medicinal properties. Beginning with a focus on the oral absorption of drugs, the book discusses: The central dogma of oral drug absorption (the interplay of dissolution, solubility, and permeability of a drug), which forms the basis of the biopharmaceutical classification system (BCS) The concept of drug concentration How to simulate key drug absorption processes The physiological and drug property data used for biopharmaceutical modeling Reliable practices for reporting results With over 200 figures and illustrations and a peerless examination of all the key aspects of drug research—including running and interpreting models, validation, and compound and formulation selection—this reference seamlessly bringstogether the proven practical approaches essential to developing the safe and effective medicines of tomorrow.

ADME Processes in Pharmaceutical Sciences - Alan Talevi 2018-11-30

Absorption, Distribution, Metabolism and Excretion (ADME) processes and their relationship with the design of dosage forms and the success of pharmacotherapy form the basis of this upper level undergraduate/graduate textbook. As an introduction oriented to pharmacy students, it is also written for scientist from different fields outside of pharmaceutics. (e.g. material scientist, material engineers, medicinal chemists) who might be working in a positions in pharmaceutical companies or whose work might benefit from basic training in the ADME concepts and some biological background. Pedagogical features such as objectives, keywords, discussion questions, summaries and case studies add valuable teaching tools. This book will provide not only general knowledge on ADME processes but also an updated insight on some hot topics such as drug transporters, multi-drug resistance related to
pharmacokinetic phenomena, last generation pharmaceutical carriers (nanopharmaceuticals), in vitro and in vivo bioequivalence studies, biopharmaceuticals, pharmacogenomics, drug-drug and food-drug interactions, and in silico and in vitro prediction of ADME properties. In comparison with other similar textbooks, around half of the volume would be focused on the relationship between expanding scientific fields and ADME processes. Each of these burgeoning fields has a separate chapter in the second part of the volume, and was written with leading experts on the correspondent topic, including scientists and academics from USA and UK (Duquesne University School of Pharmacy, Indiana University School of Medicine, University of Utah College of Pharmacy, University of Maryland, University of Bath). Additionally, each of the initial chapters dealing with the generalities of drug absorption, distribution, metabolism and excretion would include relevant, classic examples related to each topic with appropriate illustrations (e.g. importance of active absorption of levodopa, implications in levodopa administration, drug drug interactions and food drug interactions emerging from the active uptake; intoxication with paracetamol as a result of glutathione depletion, CYP induction and its relationship with acute liver failure caused by paracetamol, etc). ADME Processes and Pharmaceutical Sciences is written as a core textbook for ADME processes, pharmacy, pharmacokinetics, drug delivery, biopharmaceutics, drug disposition, drug design and medicinal chemistry courses.

Guide to Simulation and Modeling for Biosciences - David J. Barnes 2015-09-01
This accessible text presents a detailed introduction to the use of a wide range of software tools and modeling environments for use in the biosciences, as well as the fundamental mathematical background. The practical constraints presented by each modeling technique are described in detail, enabling the researcher to determine which software package would be most useful for a particular problem. Features: introduces a basic array of techniques to formulate models of biological systems, and to solve them; discusses agent-based models, stochastic modeling techniques, differential equations, spatial simulations, and Gillespie’s stochastic simulation algorithm; provides exercises; describes such useful tools as the Maxima algebra system, the PRISM model checker, and the modeling environments Repast Simphony and Smoldyn; contains appendices on rules of differentiation and integration, Maxima and PRISM notation, and some additional mathematical concepts; offers supplementary material at an associated website.

Computer-Aided Applications in Pharmaceutical Technology - Jelena Duris 2023-09-18
Computer-Aided Applications in Pharmaceutical Technology: Delivery Systems, Dosage Forms, and Pharmaceutical Unit Operations, Second Edition covers the fundamentals of experimental design application and interpretation in pharmaceutical technology, chemometric methods with an emphasis on their applications in process control, neural computing, data science, computer-aided biopharmaceutical characterization, as well as the application of computational fluid dynamics in pharmaceutical technology. Completely updated, the book introduces the theory and practice of computational tools through new case studies. Chapters cover Quality by Design in pharmaceutical development, overview data mining methodologies, present computer-aided formulation development, cover experimental design applications, and much more. Presents a comprehensive review of the current state of the art on various computer-aided applications in pharmaceutical technology. Includes case studies to facilitate understanding of various concepts in computer-aided applications. Covers applications such as the development of dosage forms and/or delivery systems, pharmaceutical unit operations, and relevant physiologically based pharmacokinetic simulations.

Foundations of Molecular Modeling and Simulation - Randall Q Snurr 2016-06-01

This book is a collection of select proceedings of the FOMMS 2015 conference. FOMMS 2015 was the sixth triennial FOMMS conference showcasing applications of theory of computational quantum chemistry, molecular science, and engineering simulation. The theme of the 2015 meeting was on Molecular Modeling and the Materials Genome. This volume comprises chapters on many distinct applications of molecular modeling techniques. The content will be useful to researchers and students alike.

Clinical Trial Simulations - Holly H. C. Kimko 2010-12-10

This edition includes both updates and new uses and issues concerning CTS, along with case studies of how clinical trial simulations are being applied in various therapeutic and application areas. Importantly, the book expands on the utility of CTS for informing decisions during drug development and regulatory review. Each chapter author was selected on the basis of demonstrated expertise in state-of-the-art application of CTS. The target audience for this volume includes researchers and scientists who wish to consider use of simulations in the design, analysis, or regulatory review and guidance of clinical trials. This book does not embrace all aspects of trial design, nor is it intended as a complete recipe for using computers to design trials. Rather, it is an information source that enables the reader to gain understanding of essential background and knowledge for practical applications of simulation for clinical
trial design and analysis. It is assumed that the reader has a working understanding of pharmacokinetics and pharmacodynamics, modeling, pharmacometric analyses, and/or the drug development and regulatory processes.

Computational Drug Discovery - Vasanthanathan Poongavanam 2024-01-19

Computational Drug Discovery A comprehensive resource that explains a wide array of computational technologies and methods driving innovation in drug discovery. *Computational Drug Discovery: Methods and Applications* (2 volume set) covers a wide range of cutting-edge computational technologies and computational chemistry methods that are transforming drug discovery. The book delves into recent advances, particularly focusing on artificial intelligence (AI) and its application for protein structure prediction, AI-enabled virtual screening, and generative modeling for compound design. Additionally, it covers key technological advancements in computing such as quantum and cloud computing that are driving innovations in drug discovery. Furthermore, dedicated chapters that address the recent trends in the field of computer aided drug design, including ultra-large-scale virtual screening for hit identification, computational strategies for designing new therapeutic modalities like PROTACs and covalent inhibitors that target residues beyond cysteine are also presented. To offer the most up-to-date information on computational methods utilized in computational drug discovery, it covers chapters highlighting the use of molecular dynamics and other related methods, application of QM and QM/MM methods in computational drug design, and techniques for navigating and visualizing the chemical space, as well as leveraging big data to drive drug discovery efforts. The book is thoughtfully organized into eight thematic sections, each focusing on a specific computational method or technology applied to drug discovery. Authored by renowned experts from academia, pharmaceutical industry, and major drug discovery software providers, it offers an overview of the latest advances in computational drug discovery. Key topics covered in the book include: Application of molecular dynamics simulations and related approaches in drug discovery The application of QM, hybrid approaches such as QM/MM, and fragment molecular orbital framework for understanding protein-ligand interactions Adoption of artificial intelligence in pre-clinical drug discovery, encompassing protein structure prediction, generative modeling for de novo design, and virtual screening. Techniques for navigating and visualizing the chemical space, along with harnessing big data to drive drug discovery efforts. Methods for performing ultra-large-scale virtual screening for hit identification. Computational strategies for designing new therapeutic models, including PROTACs and molecular glues.
In silico ADMET approaches for predicting a variety of pharmacokinetic and physicochemical endpoints. The role of computing technologies like quantum computing and cloud computing in accelerating drug discovery. This book will provide readers an overview of the latest advancements in computational drug discovery and serve as a valuable resource for professionals engaged in drug discovery.

Physiologically Based Pharmacokinetic Modeling - Micaela Reddy 2005-06-14

A definitive, single source of information on PBPK modeling. Physiologically-based pharmacokinetic (PBPK) modeling is becoming increasingly important in human health risk assessments and in supporting pharmacodynamic modeling for toxic responses. Organized by classes of compounds and modeling purposes so users can quickly access information, this is the first comprehensive reference of its kind. This book presents an overview of the underlying principles of PBPK model development. Then it provides a compendium of PBPK modeling information, including historical development, specific modeling challenges, and current practices for: * Halogenated Alkanes * Halogenated Alkenes * Alkene and Aromatic Compounds * Reactive Vapors in the Nasal Cavity * Alkanes, Oxyhydrocarbons, and Related Compounds * Pesticides and Persistent Organic Pollutants * Dioxin and Related Compounds * Metals and Inorganic Compounds * Drugs * Antineoplastic Agents * Perinatal Transfer * Mixtures * Dermal Exposure Models. In addition to pinpointing specific information, readers can explore diverse modeling techniques and applications. An authoritative reference for toxicologists, ecotoxicologists, risk assessors, regulators, pharmacologists, pharmacists, and graduate students in pharmacokinetics and toxicology, Physiologically-Based Pharmacokinetic Modeling compiles information from leaders in the field and discusses future directions for PBPK modeling.

Biopharmaceutics - Hannah Batchelor 2021-12-20

Explore the latest research in biopharmaceutics from leading contributors in the field. In Biopharmaceutics - From Fundamentals to Industrial Practice, distinguished Scientists from the UK's Academy of Pharmaceutical Sciences Biopharmaceutica Focus Group deliver a comprehensive examination of the tools used within the field of biopharmaceutics and their applications to drug development. This edited volume is an indispensable tool for anyone seeking to better understand the field of biopharmaceutics as it rapidly develops and evolves. Beginning with an expansive introduction to the basics of biopharmaceutics and the context that underpins the field, the included resources go on to discuss how biopharmaceutics are integrated into product development within the pharmaceutical industry.
of how the regulatory aspects of biopharmaceutics function, as well as the impact of physiology and anatomy on the rate and extent of drug absorption, follow. Readers will find insightful discussions of physiologically based modeling as a valuable asset in the biopharmaceutics toolkit and how to apply the principles of the field to special populations. The book goes on to discuss: Thorough introductions to biopharmaceutics, basic pharmacokinetics, and biopharmaceutics measures Comprehensive explorations of solubility, permeability, and dissolution Practical discussions of the use of biopharmaceutics to inform candidate drug selection and optimization, as well as biopharmaceutics tools for rational formulation design In-depth examinations of biopharmaceutics classification systems and regulatory biopharmaceutics, as well as regulatory biopharmaceutics and the impact of anatomy and physiology Perfect for professionals working in the pharmaceutical and biopharmaceutical industries, Biopharmaceutics - From Fundamentals to Industrial Practice is an incisive and up-to-date resource on the practical, pharmaceutical applications of the field.

Clinical Trial Simulations - Holly H. C. Kimko 2010-12-09

This edition includes both updates and new uses and issues concerning CTS, along with case studies of how clinical trial simulations are being applied in various therapeutic and application areas. Importantly, the book expands on the utility of CTS for informing decisions during drug development and regulatory review. Each chapter author was selected on the basis of demonstrated expertise in state-of-the-art application of CTS. The target audience for this volume includes researchers and scientists who wish to consider use of simulations in the design, analysis, or regulatory review and guidance of clinical trials. This book does not embrace all aspects of trial design, nor is it intended as a complete recipe for using computers to design trials. Rather, it is an information source that enables the reader to gain understanding of essential background and knowledge for practical applications of simulation for clinical trial design and analysis. It is assumed that the reader has a working understanding of pharmacokinetics and pharmacodynamics, modeling, pharmacometric analyses, and/or the drug development and regulatory processes.