Introduction To Soil Mechanics Experiments Earthwork projects are critical components in civil construction and often require detailed management techniques and unique solution methods to address failures. Being earth bound, earthwork is influenced by geomaterial properties at the onset of a project. Hence, an understanding of the in-situ soil properties is essential. Slope stability is a common problem facing earthwork construction, such as excavations and shored structures. Analytical methods for slope stability remain critical for researchers due to the mechanical complexity of the system. Striving for better earthwork project managements, the geotechnical engineering community continues to find improved testing techniques for determining sensitive properties of soil and rock, including stress-wave based, nondestructive testing methods. To minimize failure during earthwork construction, past case studies and data may reveal useful lessons and information to improve project management and minimize economic losses. This volume is part of the proceedings of the 1st GeoMEast International Congress and Exhibition on Sustainable Civil Infrastructures, Egypt 2017. Knowledge of the behavior of soil mechanics is essential for forecasting the internal displacements and actions of any construction. This book, although theoretical at first glance, also offers a more practical scope, giving readers adequate tools to plan geotechnical projects correctly. The currently available soil mechanics textbooks explain theory and show some practical applications through solving abstract geotechnical problems. Unfortunately, they do not engage students in the learning process as students do not "experience" what they study. This book employs a more engaging projectbased approach to learning, which partially simulates what practitioners do in real life. It focuses on practical aspects of soil mechanics and makes the subject "come alive" through introducing real world geotechnical problems that the reader will be required to solve. This book appeals to the new generations of students who would like to have a better idea of what to expect in their employment future. This book $P_{Page} = 4/55$ covers all significant topics in soil mechanics and slope stability analysis. Each section is followed by several review questions that will reinforce the reader's knowledge and make the learning process more engaging. A few typical problems are also discussed at the end of chapters to help the reader develop problem-solving skills. Once the reader has sufficient knowledge of soil properties and mechanics, they will be offered to undertake a project-based assignment to scaffold their learning. The assignment consists of real field and laboratory data including boreholes and test results so that the reader can experience $P_{Page} = 5/55$ what geotechnical engineering practice is like, identify with it personally, and integrate it into their own knowledge base. In addition, some problems include open-ended questions, which will encourage the reader to exercise their judgement and develop practical skills. To foster the learning process, solutions to all questions are provided to ensure timely feedback. Soil Mechanics and Foundation Engineering, 2e Presents the principles of soil mechanics and foundation engineering in a simplified yet logical manner that assumes no prior knowledge of the subject. It includes all the relevant content $P_{Page 6/55}$ required for a sound background in the subject, reinforcing theoretical aspects with comprehensive practical applications. Apollo 15: Preliminary Science Report Experimental Soil Mechanics Soil Mechanics Soil Mechanics Fact Finding Survey, Permeability Testing Soil Engineering "The Apollo 15 mission was the first of the Apollo missions to utilize the full capability of a complex set of spacecraft and launch vehicles... provided results that furnish many new insights into lunar history and structure. Perhaps most important of all, this Page 7/55 mission provided results that give a meaningful overall picture of the Moon. The scientific endeavors of the Apollo 15 mission can be divided into three distinct kinds of activities: (1) the orbital experiments, 12) the package of lunar-surface experiments, and (3) the surface sampling and observation."--p. xi. The field of experimental unsaturated soil mechanics has grown considerably over the last decade. In the laboratory and in the field, innovative techniques have been introduced into mechanical, hydraulic, and geo-environmental testing. Normally, this information is widely dispersed throughout journals and conference proceedings and it is often difficult to identify suitable equipment and instrumentation for research or professional purposes. In this volume, however, the authors bring together the latest research in laboratory and field testing techniques, and the equipment employed, and examine the current state-of-the-art in a forum devoted solely to experimental unsaturated soil mechanics. The papers published in the proceedings were peer-reviewed by internationally-recognized researchers. The topics tackled by the papers include suction measurement, suction control, mechanical and hydraulic laboratory testing, geo-environmental testing, and field-testing. These proceedings are a continuation of the series of International Conferences in Germany entitled "Mechanics of Unsaturated Soils." The objective is to discuss and understand unsaturated soil behaviour, so that engineered activities are improved in terms of judgement and quality. In addition to knowledge of classical concepts, it is a challenge to adapt convincing new concepts and present them in such a way that they can be used in engineering Page 9/55 practices. This textbook offers a superb introduction to theoretical and practical soil mechanics. Special attention is given to the risks of failure in civil engineering, and themes covered include stresses in soils, groundwater flow, consolidation, testing of soils, and stability of slopes. Readers will learn the major principles and methods of soil mechanics, and the most important methods of determining soil parameters both in the laboratory and in situ. The basic principles of applied mechanics, that are frequently used, are offered in the appendices. The author's considerable experience of teaching soil mechanics is evident in the many features of the book: it is packed with supportive color illustrations, helpful examples and references. Exercises with answers enable students to self-test their understanding and encourage them to explore further through additional online material. Numerous simple computer programs are provided online as Electronic Supplementary Material. As a soil mechanics textbook, this volume is ideally suited to supporting undergraduate civil engineering students. "I am really delighted that your book is now published. When I "discovered" your course a few years ago, I was elated to have finally found a book that immediately resonated with me. Your approach to teaching soil mechanics is precise, rigorous, clear, concise, or in other words "crisp." My colleagues who share the teaching of Soil Mechanics 1 and 2 (each course is taught every semester) at the UMN have also adopted your book." Emmanuel Detournay Professor at Dept. of Civil, Environmental, and Geo-Engineering, University of Minnesota, USA Education and Training in Geo-Engineering Sciences Basic Concepts and Engineering Applications Recent Developments of Soil Mechanics and Geotechnics in Theory and Practice Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics Basic soil testing book that emphasizes the basic principles of soil mechnics using spreadsheet data processing. The book includes soil laboratory experiments, and discussion of the theoretical concepts needed to interpret the experimental results. This manual for civil and structural engineers aims to simplify as much as possible a complex subject which is often treated too theoretically, by explaining in a practical way how to provide uncomplicated, buildable and economical foundations. It explains simply, clearly and with numerous worked examples how economic foundation design is achieved. It deals with both straightforward and difficult sites, following the process through site investigation, foundation selection and, finally, design. The book: includes chapters on many aspects of foundation engineering that most other books avoid including filled and contaminated sites mining and other man-made conditions features a step-by-step procedure for the design of lightweight and flexible rafts, to fill the gap in guidance in this much neglected, yet extremely economical foundation solution concentrates on foundations for building structures rather than the larger civil engineering foundations includes many innovative and economic solutions developed and used by the authors' practice but not often covered in other publications provides an extensive series of appendices as a valuable reference source. For the Second Edition the chapter on contaminated and derelict sites has been updated to take account of the latest guidelines on the subject, including BS 10175. Elsewhere, throughout the book, references have been updated to take account of the latest technical publications and relevant British Standards. This book contains technical papers, presented in a discussion session at the XI International Conference on Soil Mechanics and Foundation Engineering held in San Francisco in 1985, on the role of centrifuge in geotechnical testing, with descriptions of test facilities. Unsaturated Soils: Advances in Geo-Engineering comprises 136 contributions from leading international researchers and practitioners, presented at the First European Conference on Unsaturated Soils (Durham. UK, 2-4 July 2008). The papers report on the latest advances in geo-engineering aspects of unsaturated soils. It is the first collection to focu Selected Papers on Soil Mechanics On the Moon with Apollo 16 Soil Testing, Soil Stability and Ground Improvement Testing, Design, and Remediation Progress Report A step-by-step text on the basic tests performed in soil mechanics, Introduction to Soil Mechanics Laboratory Testing provides procedural aids and elucidates industry standards. It also covers how to properly present data and document results. Containing numerical examples and figures, the information presented is based on American Society f Soil Mechanics Lab Manual prepares readers to enter the field with a collection of the most common soil mechanics tests. The procedures for all of these tests are written in accordance with applicable American Society for Testing and Materials (ASTM) standards. Video demonstrations for each experiment available on the website prepare readers before going into the lab, so they know what to expect and will be able to complete the tests with more confidence and efficiency. Laboratory exercises and data sheets for each test are included in the Soil Mechanics Lab Manual. Unsaturated Soils: Research and Applications contains 247 papers presented at 6th International Conference on Unsaturated Soils (UNSAT2014, Sydney, Australia, 2-4 July 2014). The two volumes provide an overview of recent experimental and theoretical advances in a wide variety of topics related to unsaturated soil mechanics: - Unsaturated Soil Behavior -Experimentation - Modelling - Case Histories -Geotechnical Engineering Problems -Multidisciplinary and New Areas Unsaturated Soils: Research and Applications presents a wealth of information, and is of interest to researchers and practising engineers in soil mechanics and geotechnical engineering. These proceedings are dedicated to Professor Geoffrey E. Blight (1934-2013), who passed in November 2013. In the last forty years, at least fifty books have been written on the subject of soil mechanics, most of them textbooks. Only a few touch on practical applications. Soil Engineering: Testing, Design, and Remediation supplies the information needed to fill the gap between textbook learning and practical know-how. When engineers deal with major p Proceedings of GeoShanghai 2018 International Conference: Multi-physics Processes in Soil Mechanics and Advances in Geotechnical Testing Structural Foundation Designers' Manual Soil Mechanics Laboratory Manual Proceedings of the 1st GeoMEast International Congress and Exhibition, Egypt 2017 on Sustainable Civil Infrastructures Page 20/55 Fundamentals of Continuum Mechanics of Soils Part - 1. Fundamentals of Soil Mechanics : Introduction * Basic Definitions and Simple Tests * Practical Size Analysis * Plasticity Characteristics of Soils * Soil Classification * Clay Mineralogy and Soil Structure * Capillary Water * Permeability of Soil * Seepage Analysis * Effective Stress Principle * Stresses due to Applied Loads * Consolidation of Soils * Shear Strength * Compaction of Soils * Soil Stabilisation * Drainage, De-watering and Wells Part-2. Earth Retaining Structures and Foundation Engineering :. Site Investigations * Stability of Slopes * Earth Pressure Theories * Design of Retaining Walls and Bulkheads * Braced Cuts and Coffer Dams * Shafts, Tunnels and Underground Conducts * Bearing Capacity of Shallow Foundations * Design of Shallow Foundations * Pile Foundation * Drilled Piers and Caissons * Well Foundations * Machine Foundations * Pavement Design * Laboratory Experiments * Introduction to Rock Mechanics * Geothechnical Earthquake Engineering * Glossary of Common Terms * Miscellaneous objective-type questions * References * Publications of Bureau of Indian Standards * Index. Introduction to Soil Mechanics Laboratory TestingCRC Press Dynamic Behavior of Materials, Volume 1: Proceedings of the 2013 Annual Conference on Experimental and Applied Mechanics, the first volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Experimental Mechanics, including papers on: General Dynamic Material Properties Novel Dynamic Testing Techniques Dynamic Fracture and Failure Novel Testing Techniques Dynamic Behavior of Geo-materials Dynamic Behavior of Biological and Biomimetic Materials Dynamic Behavior of Composites and Multifunctional Materials Dynamic Behavior of Low-Impedance materials Multi-scale Modeling of Dynamic Behavior of Materials Quantitative Visualization of Dynamic Behavior of Materials Shock/Blast Loading of Materials A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-tounderstand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers. Laboratory and Field Testing of Unsaturated Soils Soil Mechanics Vol.1 A Guidebook to the Descartes Region Unsaturated Soils. Advances in Geo-Engineering Centrifuges in Soil Mechanics Now in its sixth edition, Soil Mechanics Laboratory Manual is designed for the junior-level soil mechanics/geotechnical engineering laboratory course in civil engineering programs. It includes eighteen laboratory procedures that cover the essential properties of soils and their behavior under stress and strain, as well as explanations, procedures, sample calculations, and completed and blank data sheets. Written by Braja M. Das, respected author of market-leading texts in geotechnical and foundation engineering, this unique manual provides a detailed discussion of standard soil classification systems used by engineers: the AASHTO Classification System and the Unified Soil Classification System, which both conform to recent ASTM specifications. To improve ease and accessibility of use, this new edition includes not only the stand-alone version of the Soil Mechanics Laboratory Test software but also ready-made Microsoft Excel(r) templates designed to perform the same calculations. With the convenience of point and click data entry, these interactive programs can be used to collect, organize, and evaluate data for each of the book's eighteen labs. The resulting tables can be printed with their corresponding graphs, creating easily generated reports that display and analyze data obtained from the manual's laboratory tests. Features . Includes sample calculations and graphs relevant to each laboratory test. Supplies blank tables (that accompany each test) for laboratory use and report preparation. Contains a complete chapter on soil classification (Chapter 9). Provides references and three useful appendices: Appendix A: Weight-Volume Relationships Appendix B: Data Sheets for Laboratory Experiments Appendix C: Data Sheets for Preparation of Laboratory Reports" A step-by-step text on the basic tests performed in soil mechanics, Introduction to Soil Mechanics Laboratory Testing provides procedural aids and elucidates industry standards. It also covers how to properly present data and document results. Containing numerical examples and figures, the information presented is based on American Society for Testing and Materials (ASTM) standards, and US Army Corps of Engineers engineering manuals. The authors discuss the different methods of in situfield methods and ex situlaboratory methods of soil description and identification. They present equations for the physical properties of soil and laboratory methods of soil classification. They also discuss tests for the interaction of soil and water, and hydraulic conductivity and consolidation. These tests produce information useful in the identification and characterization of soil samples and Page 31/55 their engineering behaviors. A comprehensive resource, the book describes the evaluation of physical properties of soils, including mass, weight, unit weight, and mass density of the soil mass and its component phases. These properties are then expanded to define a number of weight and volumetric relationships. The book also discusses tests used in the evaluation of the density-water content relationships in soils and in the evaluation of the quality of compaction operations. These features and more make this book an excellent guide for testing soils. It is critical to quantify the various properties of soil in order to predict how it will behave under field loading for the safe design of soil structures. Quantification of these properties is performed using standardized laboratory tests. This lab manual prepares readers to enter the field with a collection of the most common of these soil mechanics tests. The procedures for all of these tests are written in accordance with applicable American Society for Testing and Materials (ASTM) standards. This volume details recent global advances in laboratory and field testing of unsaturated soils. Coverage includes mechanical, hydraulic, and geo-environmental testing and applications of unsaturated soil monitoring to engineering behavior of geo-structures. Page 33/55 NASA EP. Introduction to Soil Mechanics Laboratory Testing Soil Mechanics and Foundations Dynamic Behavior of Materials, Volume 1 Through Critical State Soil Mechanics Fundamentals of Continuum Mechanics of Soils provides a long-needed general scheme for the provides a long-needed general scheme for the study of the important yet problematic material of soil. It closes the gap between two disciplines, soil mechanics and continuum mechanics, showing that the familiar concepts of soil mechanics evolve directly from Page 34/55 continuum mechanics. It confirms concepts such as pore pressures, cohesion and dependence of the shear stress on consolidation, and rejects the view that continuum mechanics cannot be applied to a material such as soil. The general concepts of continuum mechanics, field equations and constitutive equations are discussed. It is shown how the theory of mixtures evolves from these equations and how, along with energetics and irrevers- ible thermodynamics, it can be applied to soils. The discussion also sheds light on some aspects of mechanics of materials, especially compressible materials. Examples are the introduction of the Hencky measure of strain, the requirement of dual constitutive equations, and the dependence of the spent internal energy on the stored internal energy. Researchers in engineering mechanics and material sciences may find that the results of experiments on soils can be generalized and extended to other materials. The book is a reference text for students familiar with the fundamentals of mechanics, for scholars of soil engineering, and for soil scientists. It is also suitable as an advanced undergraduate course in soil mechanics. A comprehensive guide to the most useful geotechnical laboratory measurements Cost effective, high quality testing of geo-materials is possible if you understand the important factors and work with nature wisely. Geotechnical **Laboratory Measurements for Engineers guides** geotechnical engineers and students in conducting efficient testing without sacrificing the quality of results. Useful as both a lab manual for students and as a reference for the practicing geotechnical engineer, the book covers thirty of the most common soil tests. referencing the ASTM standard procedures while helping readers understand what the test is analyzing and how to interpret the results. Features include: Explanations of both the underlying theory of the tests and the standard testing procedures The most commonly-taught laboratory testing methods, plus additional advanced tests Unique discussions of electronic transducers and computer controlled tests not commonly covered in similar texts A support website at www.wiley.com/college/germaine with blank data sheets you can use in recording the results of your tests as well as Microsoft Excel® spreadsheets containing raw data sets supporting the experiments Topics of this book span the range from spatial and temporal discretization techniques for contact and impact problems with small and finite deformations over investigations on the reliability of micromechanical contact models over emerging techniques for rolling contact mechanics to homogenization methods and multi-scale approaches in contact problems. A simplified approach to applying the Finite **Element Method to geotechnical problems** Predicting soil behavior by constitutive equations that are based on experimental findings and embodied in numerical methods. such as the finite element method, is a significant aspect of soil mechanics. Engineers are able to solve a wide range of geotechnical engineering problems, especially inherently complex ones that resist traditional analysis. **Applied Soil Mechanics with ABAQUS®** Applications provides civil engineering students and practitioners with a simple, basic introduction to applying the finite element method to soil mechanics problems. Accessible to someone with little background in soil mechanics and finite element analysis. Applied Soil Mechanics with ABAQUS® Applications explains the basic concepts of soil mechanics and then prepares the reader for solving geotechnical engineering problems using both traditional engineering solutions and the more versatile, finite element solutions. Topics covered include: Properties of Soil Elasticity and **Plasticity Stresses in Soil Consolidation Shear** Strength of Soil Shallow Foundations Lateral Earth Pressure and Retaining Walls Piles and Pile Groups Seepage Taking a unique approach, the author describes the general soil mechanics for each topic, shows traditional applications of these principles with longhand solutions, and then presents finite element solutions for the same applications, comparing both. The book is prepared with ABAQUS® software applications to enable a range of readers to experiment firsthand with the principles described in the book (the software application files are available under "student resources" at www.wiley.com/college/helwany). By presenting both the traditional solutions alongside the FEM solutions, Applied Soil Mechanics with ABAQUS® Applications is an ideal introduction to traditional soil mechanics and a guide to alternative solutions and emergent methods. Dr. Helwany also has an online course based on the book available at www.geomilwaukee.com. Proceedings of the International Symposium on Advanced Experimental Unsaturated Soil Mechanics, Trento, Italy, 27-29 June 2005 Geotechnical Laboratory Measurements for Engineers Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils (Guilin, China, 23-26 October 2015) Micro to MACRO Mathematical Modelling in Soil Mechanics An Introduction to the Mechanics of Soils and Foundations This special issue collects selected contributions (excluding general lectures) of a Symposium on "Micro to MACRO Mathematical Modelling in Soil Mechanics", which took place at the University of Reggio Calabria, Italy, from May 29th to June 1st, 2018. The Symposium provided an opportunity to enhance the scientific debate on the construction of mathematical models for the description of the physical behaviour of soils, as well as on the suggestions provided by the micro-mechanical observation of the matter. The focus was on the comparison between the appropriateness of models and the need of mathematics to obtain rigorous results, which involves know-how from applied mathematical physics, geotechnical engineering and mechanics of solids. The contributions were selected by the Editors and the other Members of the Scientific Committee of the Symposium: Gianfranco Capriz (Pisa, Roma), Claudio di Prisco (Milan), Wolfgang Ehlers (Stuttgart), James T. Jenkins (Cornell), Stefan Luding (Twente), David Muir Wood (Dundee), Kenichi Soga (Berkeley). A selection of papers by Professor AW Skempton, aiming to show his breadth of achievement in the field of soilmechanics. The chosen papers are reproduced chronologically, most of them falling into three subject groups: soil properties, stability of slopes, and foundations. This collection is useful to engineers, research workers, and students. This book provides essential insights into recent developments in fundamental geotechnical engineering research. Special emphasis is given to a new family of constitutive soil description methods, which take into account the recent loading history and the dilatancy effects. Particular attention is also paid to the numerical implementation of multi-phase material under dynamic loads, and to geotechnical installation processes. In turn, the book addresses implementation problems concerning large deformations in soils during piling operations or densification processes, and discusses the limitations of the respective methods. Numerical simulations of dynamic consolidation processes are presented in slope stability analysis under seismic excitation. Lastly, achieving the energy transition from conventional to renewable sources Page 47/55 will call for geotechnical expertise. Consequently, the book explores and analyzes a selection of interesting problems involving the stability and serviceability of supporting structures, and provides new solutions approaches for practitioners and scientists in geotechnical engineering. The content reflects the outcomes of the Colloquium on Geotechnical Engineering 2019 (Geotechnik Kolloquium), held in Karlsruhe, Germany in September 2019. Covering the undergraduate course in geotechnical engineering for civil engineers, this work sets out the basic theories of soil mechanics in a clear, simple way, combining both classical and critical state theories. By using short, focused chapters, the author ensures an accessible text while maintaining a continuous thread running through the book as theory develops into application. The treatment of soil mechanics is essentially theoretical but it is not highly mathematical and soil behaviour is represented by relatively simple equations with clearly defined parameters. The theory is supported by worked examples and simple experimental demonstrations. Computational Contact Mechanics Advanced Experimental Unsaturated Soil Mechanics Soil Mechanics Lab Manual, 2nd Edition Unsaturated Soils: Research & Applications Soil Mechanics and Foundation Engineering, 2e In recent years the International Society for Soil Mechanics and Geotechnical Engineering (ISSMGE), the International Association for Engineering Geology and Environment (IAEG), and the International Society for Rock Mechanics (ISRM) have concluded a Cooperation Agreement, leading to the foundation of the Federation of International Geo-engineering Manual of Geotechnical Laboratory Soil Testing covers the physical, index, and engineering properties of soils, including compaction characteristics (optimum moisture content), permeability (coefficient of hydraulic conductivity), compressibility characteristics, and shear strength (cohesion intercept and angle of internal friction). Further, this manual covers data collection, analysis, computations, additional considerations, sources of error, precautionary measures, and the presentation results along with well-defined illustrations for each of the listed tests. Fach test is based on relevant standards with pertinent references, broadly aimed at geotechnical design applications. FEATURES Provides fundamental coverage of elementary-level laboratory characterization of soils Describes objectives, basic concepts, general understanding, and appreciation of the geotechnical principles for determination of physical, index, and engineering properties of soil materials Presents the step-by-step procedures for various tests based on relevant standards Interprets soil analytical data and illustrates empirical relationship between various soil properties Includes observation data sheet and analysis, results and discussions, and applications of test results This manual is aimed at undergraduates, senior undergraduates, and researchers in geotechnical and civil engineering. Prof. (Dr.) Bashir Ahmed Mir is among the senior faculty of the Civil Engineering Department of the National Institute of Technology Srinagar and has more than two decades of teaching experience. Prof. Mir has published more than 100 research papers in international journals and conferences; chaired technical sessions in international conferences in India and throughout the world; and provided consultancy services to more than 150 projects of national importance to various government and private agencies. This book is the second volume of the proceedings of the 4th GeoShanghai International Conference that was held on May 27 - 30, 2018. This conference showcased the recent advances and technology in geotechnical engineering, geoenvironmental engineering and transportation engineering. This volume, entitled "Multiphysics Processes in Soil Mechanics and Advances in Geotechnical Testing", covers a wide range of topics in soil mechanics, focusing on the behaviours of partially saturated soils, combined effects of multi-physics processes in geological materials and systems, and emerging methods and techniques in geotechnical in-situ testing and monitoring. This book may benefit researchers and scientists from the academic fields of soil and rock mechanics, geotechnical engineering, geoenvironmental engineering, transportation engineering, geology, mining and energy, as well as practical engineers from the industry. Each of the papers included in this book received at least two positive peer reviews. The editors would like to express their sincerest appreciation to all of the anonymous reviewers all over the world, for their diligent work. In the past decades advances have been made in the research and practice on unsaturated soil mechanics. In 2000 the first Asia-Pacific Conferences on Unsaturated Soils was organized in Singapore. Since then, four conferences have been held under the continued support of the Technical Committee on Unsaturated Soils (TC106) of the International Socie Soil Mechanics and Geotechnical Engineering, Engineering Geology, Rock Mechanics Applied Soil Mechanics with ABAQUS Applications **Experimental Unsaturated Soil Mechanics** Soil Mechanics & Foundation Engineering In Si Units An Introduction to Soil Mechanics